Logo

Is there a builtin way to pretty-print the entire Series / DataFrame?

By default, when you print a large DataFrame or Series in Pandas, it will truncate rows and/or columns to keep the display compact. If you want to view all of the data in a more “full” or “pretty-print” style, you have a few straightforward options:

1. Use pd.set_option to Show All Rows/Columns

You can instruct Pandas to display all rows and all columns by setting some display options. For example:

import pandas as pd pd.set_option("display.max_rows", None) # Show all rows pd.set_option("display.max_columns", None) # Show all columns df = pd.DataFrame({"A": range(50), "B": range(50, 100)}) print(df)
  • display.max_rows = None: Tells Pandas not to truncate rows.
  • display.max_columns = None: Tells Pandas not to truncate columns.

When you do print(df) after these settings, Pandas will display every row and every column in your DataFrame. You can similarly configure other display options, such as:

  • display.width: The total width of the display (useful if columns get wrapped).
  • display.max_colwidth: Max column width before truncation of textual data.

Tip: If you’re done inspecting data, you may wish to reset these options or set them to a more modest value to avoid accidentally printing massive output. You can do pd.reset_option("display.max_rows"), for instance.

2. Use df.to_string() for a Full String Output

If you just want the full text representation of the DataFrame (regardless of display settings), convert it to a string explicitly:

print(df.to_string())
  • .to_string() returns a string representation of the entire DataFrame, without truncation.
  • You can also pass parameters, e.g. df.to_string(index=False) to skip row indices, or df.to_string(header=False) to omit column headers.

3. For a Series, Use series.to_string()

Similarly, for a Pandas Series:

s = pd.Series(range(100)) print(s.to_string())

This will print all 100 elements without truncation.

4. Jupyter Notebook: .head(), .tail(), or HTML Styling

If you’re working in a Jupyter Notebook:

  1. df.head() / df.tail(): Quick look at the first/last rows (truncates in between if large).
  2. df.style: Provides more advanced HTML rendering options, e.g. color scales, hiding the index, etc.
  3. pd.set_option("display.max_rows", None) still applies within notebooks for full display if you really want to see everything at once.

5. Third-Party Libraries for Enhanced Tables

If you need more advanced “pretty-print” formatting (e.g., ASCII tables, Markdown output), you might consider:

  • tabulate:
    from tabulate import tabulate print(tabulate(df, headers="keys", tablefmt="psql"))
  • df.to_markdown() (Pandas >= 1.0.0)
    print(df.to_markdown())

These can produce more visually appealing outputs, especially for console-based or Markdown-based workflows.

Learn More About Pandas & Python

If you’re looking to deepen your data manipulation skills and Python proficiency, here are some recommended courses from DesignGurus.io:

  1. Grokking Python Fundamentals
    Dive into Python essentials.

  2. Grokking the Coding Interview: Patterns for Coding Questions
    Ideal if you’re preparing for technical interviews, focusing on pattern-based solutions to common coding challenges.

Final Thoughts

  • Built-In Approach: Yes, you can simply use pd.set_option("display.max_rows", None) (and other display options) or df.to_string() for a built-in solution to view the entire DataFrame/Series in your console output.
  • Performance Consideration: Printing massive DataFrames can be overwhelming or slow. Often, it’s more practical to filter, summarize, or just show a portion of the data (e.g., df.head(100)).

With these techniques, you’ll have fine-grained control over how and when to view every row and column, ensuring you never miss important details hidden by default truncation. Happy data exploration!

CONTRIBUTOR
TechGrind