How do I expand the output display to see more columns of a Pandas DataFrame?
By default, Pandas truncates columns in the console or Jupyter Notebook to keep the output view compact. If you want to see all columns of a DataFrame, here are the most common ways:
1. Use pd.set_option
to Display All Columns
import pandas as pd # Show all columns pd.set_option("display.max_columns", None) # Optionally, control the display width pd.set_option("display.width", None) # Now printing a DataFrame will display all columns df = pd.DataFrame({ "col1": [1, 2, 3], "col2": [4, 5, 6], "col3": [7, 8, 9], "col4": [10, 11, 12] }) print(df)
display.max_columns
: Setting toNone
means “unlimited columns.”display.width
: Setting toNone
tells Pandas to autodetect the best width for your console.
2. Reset Options Later If Desired
If you’d like to revert to default Pandas display settings:
pd.reset_option("display.max_columns") pd.reset_option("display.width")
3. Jupyter Notebook Display
In a Jupyter environment, these settings also apply. Additionally, you can use:
from IPython.display import display display(df)
to render the DataFrame in a scrollable table (depending on your Jupyter theme and version).
4. df.to_string()
for String Output
For a quick snapshot without display truncation:
print(df.to_string())
This prints the entire DataFrame (all rows and columns) as text, ignoring default truncation.
Next Steps: Strengthen Your Python Skills
To get the most out of Python and Pandas, you’ll want a solid foundation. Grokking Python Fundamentals by DesignGurus.io is an excellent course to deepen your understanding of Python 3 features, best practices, and coding patterns—ensuring your data analysis and manipulation skills shine.
With these display settings (and enhanced Python knowledge), you’ll be able to inspect large or wide DataFrames in a more convenient and informative way. Happy data exploration!